Manjul Bhargava ist ein kanadisch-amerikanischer Mathematiker indischer Herkunft, der für seine Beiträge zur Zahlentheorie bekannt ist. Als Gewinner der Fields-Medaille - einer prestigeträchtigen Auszeichnung für Mathematiker unter 40 Jahren - ist er derzeit R. Brandon Fradd-Professor für Mathematik an der Princeton University und Stieltjes-Professor für Zahlentheorie an der Universität Leiden. Er wurde in Ontario, Kanada, als Sohn von Eltern geboren, die aus Indien eingewandert waren, und wurde bereits in jungen Jahren von seiner Mutter, die Mathematikerin an der Hofstra University war, in mathematische Konzepte eingeführt. Er wuchs zu einem brillanten Schüler auf und war hochbegabt in Mathematik - er absolvierte alle seine Mathematik- und Informatikkurse an der High School im Alter von 14 Jahren. Nach der High School schloss er sein B.A. von der Harvard University und erhielt den Morgan-Preis für seine Forschung als Student. Er erhielt ein Hertz-Stipendium für die Princeton University, von wo aus er promovierte und eine akademische Karriere begann. Er hat im Laufe seiner Karriere mehrere wichtige Beiträge zur Mathematik geleistet und ist besonders bekannt für seine 14 neuen Kompositionsgesetze im Gauß-Stil, die aus den Werken des deutschen mathematischen Genies Carl Friedrich Gauss abgeleitet sind.
Kindheit & frühes Leben
Manjul Bhargava wurde am 8. August 1974 in Ontario, Kanada geboren. Seine Mutter Mira Bhargava ist Mathematikerin an der Hofstra Universität.
Seine Mutter unterrichtete ihn schon in jungen Jahren in Mathematik und er war in der Schule in diesem Fach hervorragend. Mit 14 Jahren hatte er alle seine Mathematik- und Informatikkurse an der High School abgeschlossen.
Er absolvierte 1992 die Plainedge High School in North Massapequa als Klassenvalidator. Er fuhr fort, seinen B.A. 1996 an der Harvard University. Als brillanter Student gewann er 1996 den Morgan-Preis für seine Forschung als Student.
Er erhielt ein Hertz-Stipendium, mit dem er an der Princeton University promovieren konnte. Er wurde von Andrew Wiles betreut und promovierte. in 2001.
In seiner Doktorarbeit In seiner These verallgemeinerte er Gauß 'klassisches Gesetz zur Komposition binärer quadratischer Formen auf viele andere Situationen. Seine Ergebnisse ergaben viele praktische Anwendungen, einschließlich der Parametrisierung von quartischen und quintischen Ordnungen in Zahlenfeldern.
Werdegang
Manjul Bhargava begann nach seiner Promotion eine akademische Karriere und war 2001-02 Gastwissenschaftler am Institute for Advanced Study und 2002-03 an der Harvard University.
Er hatte früh in seiner Karriere Erfolg und wurde 2003 zum ordentlichen Professor in Princeton ernannt. Mit nur 28 Jahren war er der zweitjüngste, dem eine Amtszeit angeboten wurde.
2010 wurde er an den Stieltjes-Lehrstuhl der Universität Leiden berufen. Bhargava wurde 2013 in die National Academy of Sciences der Vereinigten Staaten gewählt. Die Akademie ist eine der höchsten disziplinarischen akademischen Einrichtungen des Landes, in der Fachexperten untergebracht sind, die die Regierung in Fragen im Zusammenhang mit Wissenschaft und Technologie beraten.
Manjul Bhargava hat mehrere Beiträge zur Mathematik geleistet, insbesondere zur Zahlentheorie. Er entwickelte mehrere neue Techniken zum Zählen von Objekten in der algebraischen Zahlentheorie, die die Art und Weise revolutionierten, wie grundlegende arithmetische Objekte in der algebraischen Zahlentheorie verstanden werden. Seine Forschung hat zu mehreren spannenden Anwendungen geführt.
Vor etwa 200 Jahren hatte der deutsche Mathematiker Carl Friedrich Gauss ein bemerkenswertes „Kompositionsgesetz“ für binäre quadratische Formen entdeckt, das als zentrales Werkzeug in der algebraischen Zahlentheorie gilt. Bhargava entwickelte eine einfachere geometrische Technik, um das Gaußsche Gesetz abzuleiten. Die von ihm entwickelte Technik ermöglichte es ihm auch, Kompositionsgesetze für höhere Grade zu erhalten.
Neben der Zahlentheorie leistete er wichtige Beiträge zur Darstellungstheorie quadratischer Formen, zu Interpolationsproblemen und zur p-adischen Analyse sowie zur Untersuchung idealer Klassengruppen algebraischer Zahlenfelder.
Hauptarbeiten
Manjul Bhargava ist am bekanntesten für seine Arbeiten in der Zahlentheorie. Er vereinfachte Gaußes klassisches Gesetz zur Komposition binärer quadratischer Formen und leitete 14 neue Kompositionsgesetze nach Gauß ab.
In Zusammenarbeit mit Arul Shankar hat er bewiesen, dass der durchschnittliche Rang aller elliptischen Kurven über Q (nach Höhe geordnet) begrenzt ist. Das Duo bewies auch die Vermutung von Birch und Swinnerton-Dyer für einen positiven Anteil elliptischer Kurven.
Auszeichnungen & Erfolge
2005 erhielt er den Clay Research Award. Im selben Jahr gewann er auch den Leonard M. und Eleanor B. Blumenthal Award für die Förderung der Forschung in der reinen Mathematik.
Im Jahr 2012 wurde Bhargava der erste Empfänger des Simons Investigator Award.
2014 erhielt er die prestigeträchtige Fields-Medaille „für die Entwicklung leistungsfähiger neuer Methoden in der Geometrie von Zahlen, die er anwendete, um Ringe mit kleinem Rang zu zählen und den durchschnittlichen Rang von elliptischen Kurven zu begrenzen“.
Er wurde 2015 mit dem Padma Bhushan ausgezeichnet, dem dritthöchsten zivilen Preis Indiens.
Persönliches Leben & Vermächtnis
Bhargava nennt sich "im Herzen ein Inder" und hat Sanskrit von seinem Großvater Purushottam Lal Bhargava studiert, einem bekannten Gelehrten des Sanskrit und der alten indischen Geschichte. Er ist auch ein versierter Tabla-Spieler und wurde unter prominenten Gurus wie Zakir Hussain ausgebildet.
Kurzinformation
Geburtstag 8. August 1974
Staatsangehörigkeit Amerikaner
Berühmt: MathematikerAmerican Men
Sonnenzeichen: Löwe
Geboren in: Hamilton, Kanada
Berühmt als Mathematiker
Familie: Mutter: Mira Bhargava Stadt: Hamilton, Kanada Weitere Fakten: 2014 - Fields Medal 2005 - SASTRA Ramanujan Prize 2015 - Padma Bhushan 2011 - Fermat Prize 2005 - Clay Research Award 2008 - Frank Nelson Cole Prize für Zahlentheorie 2003 - Merten M. Hasse-Preis - Die faktorielle Funktion und Verallgemeinerungen